Guilherme S. Imai Aldeia
Guilherme earned his PhD in November 2025 and researches genetic programming and its applications in the health sciences. His works include developing methods for symbolic regression, applying machine learning to fMRI data, and advancing explainable artificial intelligence applications. He is currently interested in evolutionary computing, interpretability in machine learning, optimization methods for symbolic regression, and computational models of neural information processing.
EDUCATION
EXPERIENCE
- Assisted in courses on Artificial Intelligence and Machine Learning.
- Developed weekly programming exercises for students (3 months).
- Teaching assistant for Algorithm Complexity Analysis (3 months).
- 14 publications with 180+ citations since 2020.
- Two journal publications (IEEE Trans. Evol. Comput., Genet. Program. Evolvable Mach.) and multiple international conferences (GECCO, ML4HC, WCCI CEC).
- Peer reviewer for IEEE Trans. Evol. Comput., IEEE WCCI, IEEE CAI, and Royal Society since 2022.
- 1st Place Undergraduate Final Project at Brazilian Symposium on Information Systems CTCCSI (2020).
SKILLS
- Python, C++, Julia
- Linux (10+ years), Bash, SSH, Docker, SLURM, Git, LaTeX, Cloud Computing
- Quick learner, scientific outreach, guitar player
- Portuguese (native), English (fluent), Spanish (basic)
PROJECTS
- Using symbolic regression and language models to generate computable phenotypes for hypertension from EHR data.
- Training and interpreting ML classifiers on pediatric fMRI data to understand pain mechanisms in youth.
- Focused on enhancing model accuracy and interpretability in symbolic regression.
- Created new explanation methods and evaluated explanations in symbolic regression.
- Predicted brain functional changes 3 years in the future using graph theory and fMRI data.
- Studied symbolic regression and proposed the Interaction-Transformation Evolutionary Algorithm (ITEA).
PUBLICATIONS
Aldeia, G. S. I., Romano, J. D., de França, F. O., Herman, D. S., & La Cava, W. G. (2025). Towards symbolic regression for interpretable clinical decision scores.
Aldeia, G. S. I., Herman, D. S., & La Cava, W. G. (2025). Iterative Learning of Computable Phenotypes for Treatment Resistant Hypertension using Large Language Models. Proceedings of Machine Learning Research, 298, 1–31. https://proceedings.mlr.press/v298/aldeia25a.html
Aldeia, G. S. I., Zhang, H., Bomarito, G., Cranmer, M., Fonseca, A., Burlacu, B., La Cava, W. G., & de França, F. O. (2025). Call for Action: towards the next generation of symbolic regression benchmark. Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO ’25 Companion), 2529–2538. https://doi.org/10.1145/3712255.3734309
Aldeia, G. S. I., Moon, C., Shulman, J., Sethna, N., Smith, A., Lebel, A., La Cava, W. G., & Holmes, S. (2025). Application of Artificial Neural Networks and Functional Brain Connectivity to Inform Pediatric Headache. The Journal of Pain, 29. https://doi.org/10.1016/j.jpain.2025.105140
Aldeia, G. S. I., de França, F. O., & La Cava, W. G. (2024). Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’24), 896–904. https://doi.org/10.1145/3638529.3654147
Aldeia, G. S. I., de França, F. O., & La Cava, W. G. (2024). Minimum variance threshold for epsilon-lexicase selection. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’24), 905–913. https://doi.org/10.1145/3638529.3654149
Aldeia, G. S. I., & de França, F. O. (2022). Interpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data set. Genetic Programming and Evolvable Machines, 23, 309–349. https://doi.org/10.1007/s10710-022-09435-x
Aldeia, G. S. I., & de França, F. O. (2022). Interaction-transformation evolutionary algorithm with coefficients optimization. Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO ’22), 2274–2281. https://doi.org/10.1145/3520304.3533987
de França, F. O., & Aldeia, G. S. I. (2021). Interaction–Transformation Evolutionary Algorithm for Symbolic Regression. Evolutionary Computation, 29(3), 367–390. https://doi.org/10.1162/evco_a_00285
Aldeia, G. S. I., & de França, F. O. (2020). A Parametric Study of Interaction-Transformation Evolutionary Algorithm for Symbolic Regression. IEEE Congress on Evolutionary Computation (CEC), 1–8. https://doi.org/10.1109/CEC48606.2020.9185521
Spadini, T., Aldeia, G. S. I., & others. (2019). On the application of SEGAN for the attenuation of the ego-noise in the speech sound source localization problem. 2019 Workshop on Communication Networks and Power Systems (WCNPS), 1–4. https://doi.org/10.1109/WCNPS.2019.8896308
Aldeia, G. S. I., & de França, F. O. (2018). Lightweight Symbolic Regression with the Interaction-Transformation Representation. IEEE Congress on Evolutionary Computation (CEC), 1–8. https://doi.org/10.1109/CEC.2018.8477951